Sito in Italia dove è possibile acquistare la consegna acquisto Viagra a buon mercato e di alta qualità in ogni parte del mondo.

References i ask myself.doc

References

Anderson, G.J. and Braunstein M.L. (1985). Induced self motion in central vision. Journal of Experimental Psychology: Human Perception and Performance, 11(2), Becker, W., Jurgens, R. (1979). An analysis of the saccadic system by means of a double step stimuli. Vision Research, 19, 967-983. Bedell, H.E., Lott, L.A., Suppression of motion-produced smear during smooth pursuit eye movements. Current Biology, vol.6, pp1032-1034 Blair, S.M., Gavin, M. (1979). Response of the vestibulo-ocular reflex to differing programs of acceleration. Investigative ophthalmology, 1979, 18, 1086-1090. Brandt, T.H., Dichgans, J. and Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Brenner, E., VanDenBerg, A.V. (1994). Judging object velocity during smooth pursuit eye movements. Experimental Brain Research, 99 (2), 316-324. Cheng, M., Outerbridge, J.S. (1975). Optokinetic nystagmus during selective retinal stimulation. Experimental Brain Research, 23, 129-139. Cheung B.S.K., Howard I.P., Money K.E. (1991). Visually induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviation, Space and Environmental Collewijn, H., Martins, A.J., & Steinman, R.M. (1983). Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification, Journal of Physiology, 340, 259-286. Collewijn, H., Van Die, G. (1986) Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial visual field masking, scotopic vision and central retinal scotomata. Brain Research, 383, pp185-194 Demer, J.L., Goldberg, J., Jenkins, H.A., & Porter, F.I. (1987). Vestibulo-ocular reflex during magnified vision: adaptation to reduce visual-vestibular conflict, Aviation, Space and Environmental Medicine, 58 (9, Supplement.), A175-A179. Demer, J.L., Porter, F.I., Goldberg, J., Jenkins, H.A., & Schmidt, K. (1989). Adaptation to telescopic spectacles: vestibulo-ocular reflex plasticity, Investigative Ophthalmology and Visual Science, 30 (1), 159-170. Dichgans, J. (1977). Optokinetic nystagmus as dependent on the retinal periphery via the vestibular nucleus. Control of Gaze by Brain Stem Neurons, Developments in Ditchburn, R.W. Eye movements and visual perception. Oxford: Clarendon press, Draper, M.H. (1998). The adaptive effects of virtual interfaces: vestibulo-ocular reflex and simulator sickness. Doctoral thesis, http://www.hitl.washington.edu. Dubois, M.F.W., Hollewijn, H. (1979). Optokinetic reactions in man elicited by localised retinal motion stimuli. Vision Research, 19, 1105-1115. Ebenholtz, S.M., Cohen, M.M. (1994). The possible role of nystagmus in motion sickness: a hypothesis. Aviation, Space and Environmental Medicine. 65, 1032- Fletcher, W.A., Hain, T.C., Zee, D.S. (1990). Optokinetic nystagmus and after- nystagmus in human beings: relationship to non-linear processing of information about retinal slip. Experimental Brain Research, 81, 46-52. Fowlkes, J.E., Kennedy, R.S., Hettinger, L.J. and Harm, D.L. (1993). Changes in the dark focus of accommodation associated with simulator sickness. Aviation, Space and Environmental Medicine, 64 (7), 612-618. Gauthier, G.M. & Robinson, D.A. (1975). Adaptation of the vestibulo-ocular reflex to magnifying lenses, Brain Research, 92, 331-335. Golding J.F and Kerguelen, M. (1992). A comparison of the nauseogenic potential of low-frequency vertical versus horizontal linear oscillation. Aviation, Space and Environmental Medicine, 63 (6), 491-497. Gordon, C.R., Spitzer, O., Doweck, I., Shupak, A., & Gadoth, N. (1996). The vestibulo- ocular reflex and seasickness susceptibility, Journal of Vestibular Research, 6, 229- Graaf, B., Wertheim, A.H., Bles, W., Kremers, J. (1990). Angular velocity, not temporal frequency determines circular vection. Vision Research, 30 (4), 637-646. Graaf, B., Wertheim, A.H., Bles, W. (1991) The Aubert-Fleisch paradox does appear in visually induced self-motion. Vision Research, 31 (5), 845-849. Griffin M.J. (1990) Handbook of Human Vibration. London, Academic Press. Haddad, G.M., Steinman, R.M. (1973). The smallest voluntary saccade: implications for fixation. Vision Research, 13, 1075-1086. Hallett, P.E. Primary and secondary saccades to goals defined by instructions. Vision Hallett, P.E. (1986). Eye movements. Handbook of Perception and Human Performance, John Wiley and Sons, volume 1 (Sensory processes and perception) Henson, D.B. (1979). Investigation into corrective saccadic eye movements for re- fixation amplitudes of 10 degrees and below. Vision Research, 19, 57-61. Hettinger, L.J., Berbaum, K.S., Kennedy, R.S., Dunlap, W.P., and Nolan, M.D., (1990). Vection and simulator sickness. Military Psychology, 2(3), 171-181. Holmes, S.R. (1998). Individual sympathetic nervous system activity and motion sickness susceptibility. PhD Thesis, Human Factors Research Unit, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, Hood, J.D. (1967). Observations upon the neurological mechanism of optokinetic nystagmus with especial reference to the contribution of peripheral vision. Acta oto- Howard, I.P., Ohmi, M. (1984). The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Research, vol.24 (9), 969-976. Howarth, P.A., Costello, P.J. (1996). The nauseogenicity of using a head-mounted display, configured as a personal viewing system, for an hour. The Proceedings of the Second FIVE International Conference Palazzo dei Congressi, 19-20 December Hu, S, Stern, R.M., Vasey, M.S. and Koch, K.L. (1989) Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum. Aviation, Space and Environmental Medicine, 60, 411-414. Hu, S., Davis, M.S., Klose, A.H., (1997). Effects of spatial frequency of a vertically striped rotating drum on vection induced motion sickness. Aviation, Space and Environmental Medicine. 68 (4) 306-311. Hu, S., McChesney, K.A., Player, K.A., Bahl, A.M., Buchanan, J.B., Scozzafava, J.E. (19XX). Systematic investigation of the physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviation, Space and Environmental Hu, S., Grant, W.F., Stern, R.M., Koch, K.L. (1991). Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviation, Space and Environmental Medicine. 62, p308-314. Hu, S., Glaser, K., Hoffman, T.S., Stanton, T.M., Gruber, M.B. (1996). Motion sickness susceptibility to optokinetic rotation correlates to past history of motion sickness. Aviation, Space and Environmental Medicine, 67 (4), 320-324. Hu, S., Stern, R. (1998). Optokinetic nystagmus correlates with severity of vection- induced motion sickness and gastric tachyarrhythmia. Aviation, Space and Environmental Medicine, 69 (12), 1162-1165. Kennedy, R.S. and Fowlkes, J.E. (1992). Simulator sickness is polygenic and polysymptomatic: implications for research. International Journal of Aviation Kennedy, R.S., Lilienthal, M.G., Berbaum, K.S., Baltzley, D.R., and McCauley, M.E. (1989). Simulator sickness in U.S. Navy flight simulators. Aviation, Space and Environmental Medicine, 60 (1), 10-16. Knowler, E.B., Murphy, J., Steinman, R.M. (1978). Velocity matching during smooth pursuit of different targets on different backgrounds. Vision Research, 18, 603-605. Kramer, P.D., Roberts, D.C., Shelhamer, M., Zee, D.S. (1998) A versatile stereoscopic display system for vestibular and oculomotor research. Journal of Vestibular Research, vol.8 (5), p363-379. Kramer, P.D., Shelhamer, M., Zee, D.S. (1995). Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Experimental Brain Lackner, J.R., Graybiel, A. (1979). Some influences of vision on susceptibility to motion sickness. Aviation, Space and Environmental Medicine, 50 (11), 1122-1125 Lisberger, S.G., Miles, F.A., & Zee, D.S. (1984). Signals used to compute errors in monkey vestibulo-ocular reflex: possible role of the flocculus? Journal of Neurophysiology, 52 (6), 1140-1153. Marmor, M.F., Gawande, A. (1987). Effect of visual blur on contrast sensitivity. American Academy of Ophthalmology, Annual Meeting, Dallas, November 1987, Melvill Jones, G., Mandl, G. (1979). Effects of strobe light on adaptation of vestibulo- ocular reflex (VOR) to vision reversal. Brain Research, 164, 300-303. Melvill Jones, G., Mandl, G. (1981). Motion sickness due to vision reversal: Its absence in the stroboscopic light. Annals of the New York academy of sciences, 303- Michael, J.A., Melvill Jones, G. (1966). Dependence of visual tracking capability upon stimulus predictability. Vision Research, 6, 707-716. Murasugi, C.M., Howard, I.P., Ohmi, M. (1986). Optokinetic nystagmus: the effects of stationary edges, alone and in combination with central occlusion. Vision Research, Muratore, R., Zee, D.S. (1979). Pursuit after-nystagmus. Vision Research, 19, 1057- Polyak, S.L. The retina. Chicago: University of Chicago Press, 1941. Post, R.B. (1988). Circular vection is independent of stimulus eccentricity. Perception Post, R.B., Rodemer, C.S., Dichgans, J., Leibowitz, H.W. (1979). Dynamic orientation responses are independent of refractive error. Investigative ophthalmology and visual science, supplement 18, 140-141. Prablanc, C., Jeannerod, M. (1975). Corrective saccades: dependence on retinal reafferent signals. Vision Research, 15, 465-469. Prothero, J.D., Draper, M.H., Furness, T.A., Parker, D.E., Wells, M.J. (1999). The use of an independent visual background to reduce simulator sickness side-effects. Aviation, Space and Environmental Medicine, 70 (3), 277-283. Pyykko, I., Schalen, L., Matsuoka, I. (1985). Transdermally administered scopolamine vs. dimenhydrinate (effects on different types of nystagmus). Acta Otolaryngology, Pyykko, I., Schalen, L., Jantti, V. (1985). Transdermally administered scopolamine vs. dimenhydrinate (effect on nausea and vertigo in experimentally induced motion sickness). Acta oto-laryngologica, 99, 588-596. Reason, J.T., Brand, J.J. (1975). Motion sickness. London: Academic Press. Reason, J.T. (1978). Motion sickness adaptation: a neural mismatch model. Journal of the Royal Society of Medicine, 71, 819-829. Reulen, J.P.H., Marcus, J.T., Koops, D., Vries, F.R., Tiesinga, G., Boshuizen, K., Bos, J.E., Weng, W. (1988). Precise recording of eye movement: the IRIS technique part 1. Medical and Biological Engineering and Computing, 26, 20-26.` Robinson, D.A. (1965). The mechanics of human smooth pursuit eye movement. Journal of physiology, 180, 569-591. Robinson, D.A. (1976). Adaptive gain control of the vestibulo-ocular reflex by the cerebellum. Journal of neurophysiology, 39, 954-969. Robinson, D.A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795-1808. Robinson, D.A. (1981). Control of eye movements. In Brooks, V.B. (Ed.) The Handbook of Physiology Vol. II, Part 2, The Nervous System, 1275-1320. Ron, S., Robinson, D.A., Skavenski, A.A. (1972). Saccades and the quick phase of nystagmus. Vision Research. 12, 2015-2022. Royden, C.S., Banks, M.S., Crowell, J.A. (1992) The perception of heading during eye movements. Nature, 360, 583-587. Schor, C., Narayan, V. (1981). The influence of field size upon the spatial frequency response of optokinetic nystagmus. Vision Research, 21, 985 – 994. Sharkey, T.J. and McCauley, M.E. (1991). The effect of global visual flow on simulator sickness. Proceedings of the Simulation Technologies Conference, New Orleans, Shelhamer, M., Robinson, D.A., & Tan, H.S. (1992). Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans, Journal of Vestibular Research, 2, Shelhamer, M., Tiliket, C., Roberts, D., Kramer, P.D., Zee, D.S. (1994). Short-term vestibulo-ocular reflex adaptation in humans. Experimental Brain Research, 100, 328- Shupak, A., Kerem, D., Gordon, C., Spitzer, O., Mendelowitz, N., Melamed, Y. (1990). Vestibulo-ocular reflex as a parameter of seasickness susceptibility. Oto Rhinol Skalka, H.W. (1981). Arden grating test in evaluating early posterior subcapsular cataracts. Southern Medical Journal, vol.74 (11), 1368-1370. Stern, R.M., Hu, S., Anderson, R.B., Leibowitz, H.W. and Koch, K.L. (1990). The effects of fixation and restricted visual field on vection-induced motion sickness. Aviation, Space and Environmental Medicine, 61 (8), 712-715. Straube, A., Paulus, W., Brandt, T. (1990). Influence of visual blur on object-motion detection, self-motion detection and postural balance. Behavioural Brain Research. Telford. L. and Frost. B.J. (1993). Factors affecting the onset and magnitude of linear vection. Perception and Psychophysics, 53 (6), 682-692. Treisman, M. (1977). Motion sickness: an evolutionary hypothesis. Science, 197, 493- Van Die, G.C., Collewijn, H. (1986). Control of human optokinetic nystagmus by the central and peripheral retina: effects of partial field masking, scotopic vision and central retinal scotomata. Brain Research, 383, 185-194. Vente, P.E.M., Bos, J.E., Wit, G. (1998). Motion sickness amelioration induced by prism spectacles. Brain Research Bulleti, 5, 503-505. Viirre, E. (1998). A survey of medical issues and virtual reality technology. A Hitlab publication, http://www.hitl.washington.edu/projects/vestibular/article.html Warran, W.H., Hannon, D.J. (1990). Estimating heading direction. Journal of the Optical Society of America, 6, 160-169. Wertheim, A.H. (1981). On the relativity of perceived motion. Acta Psychologica, 48, Yee, R.D., Baloh, R.W., Honrubia, V., Lau, C.G.Y., Jenkins, H.A. (1979). Slow build-up of optokinetic nystagmus associated with downbeat nystagmus (Abstract). Proceedings of the Association of Research in Vision and Ophthalmology, Sarasota, Zhao, L., Stern, R.M. (1999). Absence of habituation to repeated exposures to a rotating optokinetic drum with brief intercession intervals. Perceptual and motor skills.

Source: http://www.motion-sickness.co.uk/references.PDF

Carnosine supreme.qxd

Carnosine Carnosine is a dipepeptide composed of Alanine and Histidine which occurs naturally in meats and accumulates preferentially in muscle, brain, eyes and nervous tissue. THIS INFORMATION IS PROVIDED FOR THE USE OF PHYSICIANS AND OTHER LICENSED HEALTHBenefits proven in studies with a dose ofCARE PRACTITIONERS ONLY. THIS INFORMATION IS INTENDED FOR PHYSICIANS AND OTHERLICENSED HEAL

Company profile:

Inogen One G2 Information on Battery Date: April, 2011 Information on Inogen One G2 battery for Airline companies Inogen One G2 Battery Summary Purpose: This document is in response to FAA docket 2004-18596, “Use of Certain Portable Oxygen Concentrator Devices Onboard Aircraft.” Specifically, this document addresses battery safety requirements newly specifie

Copyright © 2010-2014 Medicament Inoculation Pdf